营业收入约为京东的20%,毛利润总额却与京东相差无几。“搅局者”拼多多,是如何从电商巨头环伺中突围的?
2024-12-18阿里的“春晚”
2024-12-13当下电商的破局之路,走出纯粹低价叙事很大程度上在于平台或商家为消费者提供了商品之外的某种价值,服务、情绪、场景不一而足。
2024-12-12羊毛党一族,在平台各种游戏规则之下,越来越肆无忌惮。
2024-12-11此系列文章主要是根据作者自己所在公司的业务模式,介绍供应链系统整个设计过程的思路、方法和核心要点。本文所讲的内容是数据统计模块。
电商、O2O行业的产品线中,后端的业务支持系统占据了很大的比重,比如订单系统、供应链系统等。供应链系统是为公司提供商品进销存业务的管理系统。大部分以交易为核心业务的公司,都有自己商品进货发货的供应链业务,供应链系统是公司供应链业务的支持,是公司后台产品线重要的一环。
作为一个后端产品的产品经理,日常工作的核心在于深入地挖掘业务,梳理流程,产出模块化的系统设计方案,和C端产品有着不小的差别。该系列主要写我在公司设计供应链系统的实操记录,根据我所在公司的业务模式,介绍供应链系统整个设计过程的思路、方法和核心要点。由于供应链具体的业务和流程每个公司不一样,因此这些内容仅供参考。
一、业务模式
在前面写的采购模块的文章中,已介绍了公司的基本业务模式,可移步参考。
二、为什么要单独写数据统计
我前面写了两篇,分别介绍了采购和调拨。写完后我发现单纯描写一大堆业务流程意义不大,一是因为那些是供应链系统们共有的东西,已经被很多文章写过了;二是因为流程只是基础支持,不能体现一个供应链系统对公司业务的价值。
电商、O2O领域的供应链系统,其核心价值有两点:
一是管理,通过规范化的流程、库存和成本规则,将公司的资产(货和钱)算清楚;
二是数据,通过各项业务数据的统计分析和智能计算,提高库存流转的效率和准确率。
作为业务方的供应链部门,数据的统计分析是他们的日常工作。仓管和采购的很多决策和管理,都需要依照数据进行。如果系统只有基础的业务流程操作,那么业务方只能手工导出明细,来人肉计算各项业务数据。
这样的话,第一,他们会在统计数据上花费大量的时间,数据不一定准,不同部门之间的数据口径会存在不一致。并且当数据量越来越大,导出明细这件事情会越来越困难;第二,作为后台产品,准确、即时、智能的价值无法体现出来,一些实时的数据变化靠人工不一定能统计到。
所以,在基本的业务流程之外,提供一些数据统计分析方向的功能,包括核心业务数据的统计报表,和一些数据的智能计算,是供应链系统能为公司实际业务带来的价值。
本文就简单介绍一下电商、O2O领域的供应链后台系统中,会有哪一些较为常见的数据统计分析功能。
三、数据对业务驱动的几个阶段
不同于基础流程和业务功能,数据统计部分不是一上来就有的,而是会在迭代的过程中,先通过业务操作积累基础数据,再将统计功能逐个上线。从产品迭代的角度来看,数据对业务的作用,大致会经过三个阶段:
(1)基础数据积累
在产品上线的早期,先通过实现各项业务流程,完成业务各环节基础数据的收集、积累,保证数据正确,不遗漏。通常这个时候的系统还是处于补全各业务模块的阶段,业务方的数据分析工作,先通过实现明细记录的查看、导出功能,保证数据能够被下载下来即可。
(2)数据统计报表展现
核心业务流程已经运转起来之后,在保证数据本身正确的前提下,可以逐步实现各项核心业务数据的统计和展现。
统计报表的价值:
第一,在于提升了业务方的统计效率和准确度,不用手工计算;
第二,通过系统实现统一的数据计算规则和查询出口,避免各个部门间数据各自算数据、口径不一致的情况;
(3)业务流转半自动化
当业务成熟后,可以借助基础数据,智能计算各项业务数据,实现供应链系统的半自动化。
智能计算的价值同样有两点:
第一,系统计算肯定比人工准,可以提升业务决策的准确率,避免库存缺货或者浪费;
第二,发挥系统的即时性,对库存情况进行实时调配和数据更新,这一点仅靠人工无法实现。一些电商领域的大公司比如京东等,靠的就是全自动化计算实现的高效供应链体系,因此这是供应链后台产品最大的价值所在。
拿我接触过的供应链系统中采购模块举个例子。
在第一阶段,上线整个采购的标准流程,借助采购、发货、收货、入库等各环节的操作,把采购申请量、供应商发货量、质检合格量等过程数据收集起来。同时做一些采购入库明细的导出功能,先满足早期的数据统计需求。
第二阶段,借助基础数据完成一些业务方需要的统计报表功能,比如采购成本统计、供应商良品率统计、供应商满足率统计等,让采购部门能够直观地通过数据,对采购的成本支出,和供应商的质量做管理。
第三阶段,系统结合当前库存、库存需求预测量、供应商良品率等数据,在每次采购时,通过公式计算需要采购的数量,给到业务方合适的采购方案。
当然以上的三个阶段不是要整个系统严格按照次序进行,要分不同模块、不同类型需求来看。有些比较关键的数据计算,比如安全库存,可以在系统上线的早期就实现。
四、几种常见的业务数据统计功能
本节从供应链业务的目标方向入手,简单介绍几种比较常见的数据统计报表功能。从产品角度而言,这几项数据需求相当于上一节写的第二阶段。不过供应链数据统计的业务,不同公司的业务形式、数据计算规则会有差别,不能生搬硬套,我分享下我接触过的业务数据,仅供参考。
(一)仓库效率分析方向
仓管人员日常会对仓库的库存效率进行统计以及考核,需要分析库存的流动性是否足够强,库存呆滞、损坏的损耗是否足够低,发货效率是否足够高等等。
常见功能:
1.库存周转率/库存周转天数统计
库存周转率/天数是个比较常见的仓库考核指标,指得是某一时段内货物周转的次数,它能从财务的角度反应供应链的流动性、资金占用情况。库存周转需要控制在一个合理的范围内,一般来说,周转率高说明流动性强,存货占用水平低。
计算规则:
库存周转率(次)=该期间内库存消耗金额/[(期初库存金额+期末库存金额)/2]
库存周转天数(天)=该期间的天数/库存周转率
库存周转天数通常会按月或按年统计。按月统计,该期间的天数即为30,按年统计即为360。
其中,库存消耗金额、期初库存金额和期末库存金额是基础数据。期初和期末库存金额指的是某个时间点的实时库存情况,系统需要在某些固定时刻(比如每月1日0点)保存下库存明细快照,再提取数据用于统计。
形式:
业务方需要每个月的库存周转数据,并对比变化趋势。因此我们时间维度上提供按月查看的选项,并显示逐月的趋势图用于直观对比。
界面大致如下:
2.呆滞库存数量和占比统计
呆滞库存,指的是一件货品入库后,留在仓库中超过一定时间没有出库的情况。如果有库存长时间没有出库,会造成库存积压,对流动性和成本产生影响。因此呆滞库存数量越低越好。
计算规则:
呆滞库存数量=入库时间超过N天的库存数量(N为呆滞定义的天数)
每个库存的入库时间为基础数据。
供应链的采购和仓储业务,都和公司的财务强相关。成本相关的统计,会被用于采购对供应商价格的管控,仓库对库存金额的统计,和财务对公司资产的成本计算,有些公司老板也会亲自看部分库存的成本。
常见功能:
1.采购成本统计
采购成本统计是根据每个时间段内所有批次的采购结算业务,来计算每个SKU在各个供应商的采购成本。它能体现当前实时的市场价格,和一段时间内的价格趋势变化。
采购成本会被公司的采购、财务部门用于做与供应商的财务结算管控。此外,很多公司核算库存成本时,会直接取采购的结算价作为库存成本,或者参照当前实时的市场价,因此采购成本统计也会被用于仓库计算成本。
计算规则:
选定时间范围和供应商,某SKU平均成本=采购结算总金额/采购入库总数量。
形式:
业务方需要当前(当月)的实时价格,以及之前每个月的价格变化趋势。因此界面上提供时间、供应商维度的筛选,以及按月的趋势图。
在采购业务中,采购人员会对供应商的质量进行分析,包括各家供应商采购的需求是否能满足,质量合格率是否够高,到货时间是否及时等,并根据各项分析的结果进行后续采购业务的供应商调整,以及采购数量分配。
常见功能:
1.供应商发货满足率
向供应商下采购单后,供应商可能会出现缺货,或者到货不及时的情况,采购发货的满足率体现了各家供应商多大程度能满足我们的需求,业务方需要实时统计每个采购批次的到货情况,以便做调整,以及作为供应商评价的依据。
计算规则:
一段时间内,某供应商发货满足率=采购收货总数量/采购订单总数量;
时间维度上,还可以选取几个时间点(当天、一天内、两天内),实时统计当前进行中的采购批次的满足率。
2.供应商质检合格率
向供应商采购商品后,公司的质检团队会对这批货品进行质检,质量不合格的需要退回去。商品质检的合格率体现了各家供应商的商品质量,供应商的评价,以及采购数量的制定,都需要参考合格率数据。
计算规则:
一段时间内,某供应商商品合格率=质检合格入库数量/采购收货总数量
五、几种常见的数据智能计算功能
本节简单介绍几种比较常见的数据智能计算功能。从产品的角度而言,这几项数据需求相当于上一节写的第三阶段,发挥后台产品的特点,将数据挖掘出价值,反过来提升业务本身,提高供应链实际业务决策的准确性、即时性。
具体的方向,可以简单地概括为计算过去,管控当下,预测未来。通过过去库存消耗情况的统计,进行当前实时库存的管控,和未来库存需求量的预测,并根据需求量智能计算订货、采购最优的方案,给到业务方参考。以上这些需求的价值在于尽可能优化库存成本,减少库存积压、浪费的损失,避免缺货的情况发生。
我对供应链业务流转半自动化的定义,是系统能智能给出以上数据的计算和调配方案,给到业务方辅助决策。供应链系统再高一层是自动化,即不用人工操作,达到这个标准的都是成熟的大公司。
下文列举几种常见的数据功能,并给出我现在所接触的业务计算规则。由于不同公司的业务形式有差别,而且各项数据计算的规则跟业务的相关性更大,因此以下内容仅供参考。
1.库存消耗情况统计
库存消耗情况是对过去一段时间内的计算,针对各个地区仓库的各个SKU,被订单消耗的数量。这项数据会作为很多统计功能的基础数据,安全库存、库存预计消耗、以及订货和采购计划,都需要参考过去的消耗情况来计算。
计算规则本身比较简单,统计下单数量、订单消耗数量两项即可。通常业务方需要观察每类SKU消耗的时间趋势,和类别、城市占比,因此在产品设计上可以通过统计图等形式,进行更直观的展示。
2.安全库存计算
安全库存是最为常见的数据计算需求。安全库存可以看做库存的阈值,是为了预防不确定性的缺货而预留库存数量。正常的库存水平需要维持在安全库存以上。当实际库存低于安全库存时会发生库存预警,需要通过调拨、采购等业务补充库存,以避免缺货的情况。
安全库存的数值,通常是通过库存预计的需求量,和到货周期的时间等基础数据计算得到。具体计算规则每个公司因不同的业务形态会有差别,我接触过的业务计算规则如下:
各仓库安全库存数量=上周库存消耗量的平均值 × 到货周期(到货周期每个SKU需要独立配置)
安全库存数值每周一0点自动更新。
3.库存预计消耗情况统计
库存预计消耗天数是根据过去的库存消耗情况(或者对未来的需求预测),计算当前实时的库存量预计能消耗多久。这项数据可以反应当前库存的情况,给公司各个部门参考,看是否有库存严重不足需要尽快补货,做运营活动的库存数量是否足够,节假日准备的库存数量能支撑多久等。
计算规则:
库存预计消耗天数=(当前库存量+当前在途库存量)/过去一周内日均库存消耗量。
4.需求预测
需求预测是通过库存过去的消耗情况,利用一些公式算法,对未来的库存消耗量进行预测。比较常见、简单的做法是通过过去一段时间内的库存消耗情况,预测接下来的库存需求量。需求预测数量会作为采购和分仓订货的参考值。业务方会有专门的物控计划员(简称pmc)来做这个事情。
我所在公司业务的波动跟星期相关,因此业务方会按周计算需求量,计算规则:
下周预计需求量=过去4周内,周消耗量的平均值
进一步扩展,需求预测有分长期、短期,定性、定量等。一些大公司的需求预测业务会有较多的因素,规则比较复杂,会考虑过去时间段的权重、季节性的变化、或者不同类型的趋势等,这里就不展开了。
5.订货计划数量计算
订货指的是各城市的分仓向总仓发出订货申请,由总仓调拨的业务,是库存流转的源头。
订货的要求是满足接下来几天的库存需求,并保证在安全库存之上。订货的SKU和具体数量,需综合考虑当前的库存量、安全库存量、库存消耗情况和需求预测值,计算得出。
需求预测值按周计算。订货的时间由业务方根据公司业务情况,设置固定的时间,比如每周一三五,然后每批次订货时,再将周需求预测值,根据实际业务情况拆分到每天。
计算规则:
下周订货数量=下周需求预测量 + 安全库存量 – 当前库存量 – 当前在途库存量
每批次的订货可以进行微调。
6.采购计划数量计算
采购部门收到物控计划员的需求预测后,分配到每家供应商,制定采购的SKU和具体数量。采购计划数量,需要在需求预测值的基础上加上供应商的质量合格率,让实际入库的数量和需求量相等。选取供应商的时候,要综合考虑供应商的满足率、发货时效,以及当前价格,制定一个合适的供应商采购方案。
采购计划按周进行,每周给到供应商采购单,供应商再在周中逐批次发货。
计算规则:
各供应商的周采购计划数量=下周需求预测量 × 该供应商采购比例 / 该供应商质量合格率
供应商采购比例,由采购人员自行制定。
半自动化的供应链系统,除了以上的数据计算之外,还有库存的智能调度、分配、缺货实时跟踪方向的事项。那一块的规则涉及到比较复杂的策略算法,本文不再深入了。
来源/人人都是产品经理
作者/潘帕斯雄鹰
物流指闻整理发布
我们期待与您互动,不要吝啬您的建议与意见。
黄刚老师深入交流请加微信:huanggang36
商务合作、爆料、投稿请加微信:logvip56
猎头、跳槽、招聘服务请加微信:headscmhrv
汉森商学院学员申请咨询请加微信:scmschool
线下活动、峰会合作请加微信:scmgroup
投稿邮箱:tougao@headscm.com
汉森总部电话11:010-62656566(工作时间:周一至周五 9:30-18:30) 地址:北京市亦庄经济技术开发区荣华南路13号中航国际广场L1栋9层